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Initial Development of a Venus Entry System for a Surface 
and Atmosphere Geochemical Explorer 



Surface and Atmosphere Geochemical Explorer (SAGE) 
Venus Exploration Motivation 

•  Venus is a critical science 
target 

–  Terrestrial planet 
comparative planetology 

–  Similarity to Earth 
–  Climate evolution  
–  Volcanic Activity 
–  Limited Venus science over 

past 50 years 

•  NASA New Frontier, 
Discovery, and Venus 
Flagship Mission are under 
concept development 

Earth and Venus 

Venus Topography 

Volcanic Activity 

• Images courtesy NASA and  ESA 



Surface and Atmosphere Geochemical Explorer (SAGE) 
Venus Exploration Motivation 

•  Thermal emission measurements from the Venus express probe indicate 
recent volcanic activity on the sfc (<2 million years ago) 

–  Even more recent suggests within the past hundreds of year! 

•  Implications to climate change theories 
•  Explains absence of craters as a method of resurfacing 
•  More insight into terrestrial planet formation 

Surface Mission is Key to Understanding this New Finding! 

• Images courtesy NASA and  ESA 
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SAGE Mission Overview 

•  Science Goals 
–  Why is Venus so Different from Earth? 
–  Was Venus once like Earth 
–  Does Venus represent Earth fate 

•  Mission design 
–  Carrier S/C with entry probe and lander element 
–  S-band Science data transmission to carrier 
–  X-band DTE form the carrier 
–  136 day cruise, 1 hour atmospheric descent, 3 hour surface life 

•  Landing Site 
–  Flank of one of Venus’s many volcanoes.  
–  High-emissivity regions (red) are interpreted to be areas where 

lava flows are relatively recent. 
–  Area free of surface hazards and steep terrain 
–  Rock distribution and surface hardness similar to Venera landing 

sites 

•  Science 
–  Atmospheric Dynamics 
–  Atmospheric Composition 
–  Surface Geology and Weathering 
–  Surface Composition and Mineralogy 

B. Bienstock and  G. Burdick, The SAGE New Frontiers Mission to Venus,”  IPPW 7, June 15th 2010. 
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Instrument Suite 

http://sagemission.jpl.nasa.gov/	
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EDL Technology Challenges 

•  Driving Requirements 
–  Entry Load (100 to 200 g’s) 
–  Entry Heating (>3 kWcm2) 
–  Descent 
–  Separations 
–  Surface Conditions  

•  Temp, Pressure rocks, hardness 
•  Short lifetime on SFC (science & 

telecom strategy) 
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PV Heritage Flight and Ground Test Conditions

PV-‐Night	  (Stag)

PV-‐Day	  (Stag)

PV-‐North	  (Stag)

PV-‐Large	  (Stag)

PV	  Arcjet	  Data	  (AEDM	  
9151-‐006)
PV	  Rocket	  Nozzle	  Test	  
(AIAA	  77-‐759)

PV	  Max	  Design	  Entry	  Conditions
AEDM	  9151-‐006

A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011 

Laub, Venkatapathy et al. 
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EDL Considerations: Surface Accessibility 

•  Surface accessibility is 
dictated by EDL constraints 

–  Too steep drives peak 
heating and g’s 

–  Too shallow drives up TPS 
Mass Fraction and skip-out 
potential 

•  EDL technology further 
constrains 

–  Testing considerations 

•  Systems level trade 
–  Landed Mass 
–  Science Driven Landing site 
–  Carrier spacecraft capability 

http://sagemission.jpl.nasa.gov/ 

Excessive TPS 
mass fraction 
(green line) 

Excessive Heating  
(red line) 



Surface and Atmosphere Geochemical Explorer (SAGE) 

8 

EDL Considerations: Atmosphere 

A. Sengupta et al., “Challenges of a Venus 
Entry Mission, IEEE, March 2011 

Venus International Reference Atmosphere  
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EDL Considerations: Winds 

A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011 

•  Wind model incorporated into POST simulations 
•  Wind included in landed stability (1 m/s winds at surface) 

From radio occultation measurements from orbiting spacecraft (Magellan, Venera)  

• At the surface the wind speed is on the order of 1 to 2 m/s 
• In the cloud layer winds can reach 100 m/s (at 70 km) 
• Wind speed increases rapidly with altitude about 50 km.  
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EDL Considerations: Surface Features 

~40 cm 

50 cm 

Venera 9 

Venera 13 
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Entry Sensitivities: G-load and TPS Mass 
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•  G-load sensitivity to Ve  
–  Most dramatic effect at FPA< -20 deg 
–  Minor dependence on BC 
–  Reducing Ve has minimal G-load reduction 

•  G-load sensitivity to FPA 
–  Minor increase with Ve 

–  Minor dependence on BC 
–  Shallowing FPA is best way to minimize G’s 

•  TPS mass sensitivity to Ve 
–  Most dramatic effect at steep angles 
–  Minor dependence on BC 
–  Reducing Ve is not best way to minimize mTPS 

•  TPS mass sensitivity to FPA 
–  Minor increase with Ve 

–  Minor dependence on BC 
–  Increasing FPA is best way to minimize mTPS 

 

A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011 
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Entry Sensitivities: Heat Flux (q) 
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•  Heat Flux sensitivity to Ve 
–  Reducing Ve is a good way to minimize q 
–  Most dramatic effect at steep angles 
–  Dependence on BC 
–  Places more burden on the S/C prop system 

•  Heat Flux sensitivity to FPA 
–  Shallowing FPA is good way to minimize q 
–  Most dramatic effect when Ve >11.2 km/s 
–  Minor dependence on BC 

•  G’s are traded for TPS mass 
•  FPA reduction 

–  Pro: good reduction in q and G’s 
–  Con: Limits landing sites, increases mTPS 

•  Ve reduction 
–  Pro: good reduction in q, modest reduction in 

G’s and mTPS 

–  Con: Simply shifts mass burden on orbiter 

 A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011 
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B. Bienstock and  G. Burdick, The SAGE New Frontiers Mission to Venus,”  IPPW 7, June 15th 2010. 
A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011. 
 

•  Ballistic Entry in a 45 deg sphere cone 
aeroshell with spin (PV) 

•  Hypersonic to subsonic deceleration 
with rigid heat shield 

•  Subsonic parachute system to extract 
the lander 

•  <60 km to the surface the lander free-
falls to the surface under a  drag plate 

•  Landing on the surface <10 m/s 
•  Lander  maintained at STP conditions 

for three hours 
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Heat Shield 

•  Carbon Phenolic Only TPS to withstand Venus hyperbolic entry 

•  DPLR and NEQAIR simulations to define peak heating with turbulent 
augmentation  

•  Combined with 6DOF POST2 simulations of descent 

TPS Peak 
Heating 
(W/cm2) 

Peak 
Pressur
e (atm) 

Densit
y (kg/
m3) 

Space  
Heritage 

CP 100,000 <50 264.3 
PV, 

Galileo 

PICA 1500 <1 227.4 Star Dust 

CC 900 <1 
1890.

2 Missiles 
SLA 
561  300 <1 

1435.
4 

MPF, 
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PV Heritage Flight and Ground Test Conditions

PV-‐Night	  (Stag)

PV-‐Day	  (Stag)

PV-‐North	  (Stag)

PV-‐Large	  (Stag)

PV	  Arcjet	  Data	  (AEDM	  
9151-‐006)
PV	  Rocket	  Nozzle	  Test	  
(AIAA	  77-‐759)

PV	  Max	  Design	  Entry	  Conditions
AEDM	  9151-‐006

A. Sengupta et al., “Challenges of a Venus Entry Mission, IEEE, March 2011 
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B. Bienstock and  G. Burdick, The SAGE New Frontiers Mission to Venus,”  IPPW 7, June 15th 2010. 

•  On Venus parachute is needed for separations or staging events not 
deceleration 
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•  Scaled from Pioneer-Venus 
parachute system 

•  BC separation device only 
•  Requirement for high stability vs. 

drag 
•  Ribbless guide surface pilot 

parachute for back-shell separation 
and main chute deploy 

•  Conical ribbon main chute for heat-
shield separation, stabilization, mid-
altitude descent 

•  Material selection to mitigate sulfuric 
acid exposure 

•  Subsonic deploy with similar 
dynamic pressure to PV 

C. Kelley et al, “Parachute Development for Venus Missions,” IPPW-7, June 2012. 
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Lander Design 

•  Titanium pressure vessel to accommodate thermal and 
pressure environment at surface houses payload and avionics 

•  Rigid aluminum drag plate for terminal descent deceleration 
•  Deployable outriggers for landed stability 
•  Honeycomb crushable for landing load attenuation 

B. Bienstock and  G. Burdick, The SAGE New Frontiers Mission to Venus,”  IPPW 7, June 15th 2010. 
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Lander Terminal Descent 

•  Descent stability and drag performance were 
required quantification with subscale wind 
tunnel testing 

–  Subscale wind tunnel tests for static drag 
coefficient drag determination 

–  Subscale wind tunnel test for dynamic aero 
coefficients / stability during terminal descent 

–  Subscale water tunnel test for stability just 
prior to landing 

–  Varied size and dihedral of drag plate to 
optimize drag and stability 

	  

Look for future AIAA ADS paper(s) in 2013 
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Lander Descent in LaRC 20-ft Vertical Spin Tunnel 



Surface and Atmosphere Geochemical Explorer (SAGE) 

20 

Conclusions 

•  Venus is on the horizon as a major planetary 
science exploration target at NASA.  

•  New scientific discoveries suggest the planet is 
geophysically active 

•  Entry probes and landers yield a wealth of 
scientific data on surface composition and 
geological history.  

•  Harsh environment of Venus and entry conditions 
impose several technical challenges  

•  Technologies already exist and have been 
demonstrated by NASA 

•  Modern entry system design process will optimize 
mass and performance 

–  Based on the latest materials, test methods, and 
computational analyses 


